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Overview



Sequential Decision Making

Main framework: Reinforcement Learning (RL).
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Abundant theoretical results. Near-optimal algorithms have been
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Most states are not visited

even once.

Strategy: approximate “value” or “policy” by functions in a parametric

class F (such as deep nets).
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• Generalization: generalize knowledge from the visited states to the

unobserved ones.

• Limited expressiveness: handle functions outside given class F .

• Exploration: address exploration vs. exploitation tradeoff.

Most existing theories focus on special cases under strong assumptions,

such as linear approximation [JYWJ20, ZLKB20], LQR [DMM+19].
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• [JKA+17]: low Bellman rank.

• [WSY20]: low Eluder dimension + completeness.
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Sample-efficient Algorithms for the New Class

GOLF (new):

• optimization-based, with optimism.

• surprisingly simple and clean.

• regret and sample complexity results match or improve the best

existing results for several well-known subclasses.

OLIVE [JKA+]:

• based on hypothesis elimination.

• new analyses for general classes.
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Formal Setups
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MDP(S,A,P, r ,H): Each episode has H steps. Transition probability

Ph(·|s, a), reward rh : S ×A → [0, 1].

Fixed initial state s1, the agent only picks action {ah}Hh=1.



Episodic MDP

x1

r1

a1

x2

r2

a2

xH

rH

aH

xH+1
. . . . . .

MDP(S,A,P, r ,H): Each episode has H steps. Transition probability

Ph(·|s, a), reward rh : S ×A → [0, 1].

Fixed initial state s1, the agent only picks action {ah}Hh=1.



Policy and Value

x1

r1

a1

x2

r2

a2

xH

rH

aH

xH+1
. . . . . .

• Policy: A map from state to action π : S → A.

• Value: Expected cumulative reward starting at step h from each

state V π
h (s) or each state-action pair Qπ

h (s, a).

• Objective: find the optimal policy to maximize the value V π
1 (s1).
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Bellman Error

There exists an optimal policy π? → optimal value Q?.

Bellman optimality equation:

Q?
h (s, a) = (ThQ?

h+1)(s, a) := rh(s, a) + Es′∼Prh(·|s,a) max
a′∈A

Q?
h+1(s ′, a′).

Bellman error:

E(f , ρ, h) := E(s,a)∼ρ (fh − Thfh+1)(s, a)︸ ︷︷ ︸
Bellman residual function
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Function Approximation

Value function approximation: given function class F = F1 × . . .×FH ,

use f = (f1, · · · , fH) ∈ F to approximate Q? = (Q?
1 , . . . ,Q

?
H).

Common assumptions:

1. realizable: ∀h ∈ [H], Q?
h ∈ Fh.

2. completeness: ∀h ∈ [H], ThFh+1 ⊂ Fh.
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Eluder Dimension
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Point z is ε-independent of {x1, x2, . . . , xn} w.r.t. F if ∃f , g ∈ F such

that
√∑

i (f (xi )− g(xi ))2 ≤ ε for all i ∈ [n], but f (z)− g(z) > ε.

Eluder dimension [RV13] dimE(F , ε):

The length of the longest sequence {xj}nj=1 such that ∃ε′ ≥ ε where xi is

ε′-independent of {xj}i−1
j=1 for all i ∈ [n].
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Bellman Eluder (BE) dimension dimBE(F ,Π, ε)

dimBE(F ,Π, ε) := max
h∈[H]

dimDE

(
(I − Th)F ,Πh, ε

)

• (I − Th)F := {fh − Thfh+1 : f ∈ F}: Bellman residuals at step h.

• Π = {Πh}Hh=1: a collection of distributions over S ×A.

Typical choices of Π:

• DF : distributions generated by executing πf greedy w.r.t f ∈ F .

• D∆: all Dirac distributions over S ×A.
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Relation to Bellman Rank

Bellman rank (type-I) is the minimum integer d , so that ∀h ∈ [H],

∃φh, ψh : F → Rd , ∀f , g ∈ F :

E(f , πg , h) := Eπg [(fh − Thfh+1)(sh, ah)] = 〈φh(f ), ψh(g)〉.
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low Bellman rank ⊂ low BE dimension
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Relation to Eluder Dimension

tabular MDPslinear MDPs
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linear MDPsLQRs

low Eluder dimension ⊂ low BE dimension

Assume completeness,

dimBE(F ,D∆, ε) ≤ dimE(F , ε).



Summary of Relations

reactive PSRs
reactive POMDPs
low Bellman

rank
tabular MDPs
linear MDPs

low Eluder
dimension

generalized
linear MDPs

low Bellman Eluder dimension

LQRs

The class of low BE dimension problems contains a majority of

known RL problems learnable in polynomial samples.



Sample-Efficient Algorithm



Upper Confidence Bounds Algorithm

1. pull arms optimistically, 2. collect rewards

3. update confidence intervals.



GOLF Algorithm

Global Optimism based on Local Fitting (GOLF)

for k = 1, ...,K

1. optimistic planning

πk = πf k , where f k = argmaxf∈B f1(s1, πf (s1)).

2. data collection

execute πk to collect a trajectory (s1, a1, . . . , sH , aH).

3. update confidence set B.

output πout sampled uniformly from {πk}Kk=1.

Key idea: global optimism + local confidence set
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GOLF Algorithm II

Confidence set B =
⋂

h Bh:

Bh︸︷︷︸
local confidence set

=

f ∈ F : LDh
(fh, fh+1)︸ ︷︷ ︸

proxy to Bellman error

≤ inf
g∈Fh

LDh
(g , fh+1)︸ ︷︷ ︸

“ERM”

+ β︸︷︷︸
relaxation


LDh

(φ, ψ) =
∑

(s,a,r ,s′)∈Dh

[φ(s, a)− r − max
a′∈A

ψ(s ′, a′)]2.



Theoretical Guarantees

Theorem [JLM21]

Assume realizability and completeness. GOLF outputs an O(ε)-optimal

policy in Õ(H2d log(NF )/ε2) episodes.

• d = minΠ∈{D∆,DF} dimBE

(
F ,Π, ε/H

)
, is the BE dimension.

• NF : O(ε)-covering number of F in ‖·‖∞.

• regret guarantee: Regret(K ) ≤ Õ(H
√
dK logNF ).

GOLF learns low BE dimension problem sample-efficiently!
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Relation to Prior Works

Guarantees for GOLF when restricted to following subclasses:

• Linear function approximation: regret Õ(Hdlin
√
K )

matches [ZLKB20].

• Low Eluder dimension: regret Õ(H
√
dEK logNF )

improves over [WSY20] by
√
dE.

• Low Bellman rank: sample complexity Õ(H2dbr log(NF )/ε2)

improves over [JKA+17] by dbr.

but requires completeness.
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√
K )

matches [ZLKB20].

• Low Eluder dimension: regret Õ(H
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OLIVE Algorithm

A hypothesis elimination-based algorithm proposed in [JKA+17].

Theorem [JLM21]

Assume realizability. OLIVE finds an ε-optimal policy within

Õ(H3d2 logNF/ε2) episodes.

• d = dimBE

(
F ,DF , ε/H

)
.

• NF : O(ε)-covering number of F .

Comparing to GOLF: worse sample complexity, no D∆, no regret

guarantees, but does not require completeness.
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New sample-efficient alg for low BE dimension problems—GOLF.

simple, clean, and with sharp rate.

New simpler analysis for OLIVE for general low BE dimension problems.

Thank You!
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