Bellman Eluder Dimension: New Rich Classes of RL Problems, Sample-Efficient Algorithms

based on joint work with Chi Jin and Sobhan Miryoosefi

Qinghua Liu

Princeton University

Collaborators

Chi Jin

Sobhan Miryoosefi

Overview

Sequential Decision Making

Main framework: Reinforcement Learning (RL).

Reinforcement Learning

Markov decision process $MDP(S, A, H, \mathbb{P}, r)$.

Reinforcement Learning

Markov decision process $MDP(S, A, H, \mathbb{P}, r)$.

Goal: find the best policy that maximizes the cumulative rewards.

Efficiency

- Sample efficiency: collecting samples can be expensive.
- Computational efficiency: training deep RL costs weeks.

Efficiency

- Sample efficiency: collecting samples can be expensive.
- Computational efficiency: training deep RL costs weeks.

AlphaGo Zero: trained on $\geq 10^7$ games, and took ≥ 1 month.

Classical RL: Tabular Case

The numbers of states & actions are finite and small.

Classical RL: Tabular Case

The numbers of states & actions are finite and small.

Strategy: visit all "reachable" states, and learn directly.

Classical RL: Tabular Case

The numbers of states & actions are finite and small.

Strategy: visit all "reachable" states, and learn directly.

Abundant theoretical results. Near-optimal algorithms have been designed. [see, e.g., AOM17, JABJ19]

Modern RL: Function Approximation

The number of states in practice is typically $\geq 10^{100}$.

Most states are not visited even once.

Modern RL: Function Approximation

The number of states in practice is typically $\geq 10^{100}$.

Most states are not visited even once.

Strategy: approximate "value" or "policy" by functions in a parametric class \mathcal{F} (such as deep nets).

• *Generalization*: generalize knowledge from the visited states to the unobserved ones.

- *Generalization*: generalize knowledge from the visited states to the unobserved ones.
- Limited expressiveness: handle functions outside given class \mathcal{F} .

- *Generalization*: generalize knowledge from the visited states to the unobserved ones.
- Limited expressiveness: handle functions outside given class \mathcal{F} .
- Exploration: address exploration vs. exploitation tradeoff.

- *Generalization*: generalize knowledge from the visited states to the unobserved ones.
- *Limited expressiveness*: handle functions outside given class \mathcal{F} .
- Exploration: address exploration vs. exploitation tradeoff.

Most existing theories focus on special cases under strong assumptions, such as linear approximation [JYWJ20, ZLKB20], LQR [DMM⁺19].

Main Question

What are the minimal structural assumptions that empower sample-efficient RL?

Main Question

What are the minimal structural assumptions that empower sample-efficient RL?

- 1. identify a rich class of RL problems.
- 2. design sample-efficient algorithms for this class.

Previous Attempts

Known classes of RL problems that can be learned sample-efficiently.

- [JKA⁺17]: low Bellman rank.
- [WSY20]: low Eluder dimension + completeness.

Previous Attempts

Known classes of RL problems that can be learned sample-efficiently.

- [JKA⁺17]: low Bellman rank.
- [WSY20]: low Eluder dimension + completeness.

Definitions and algorithms look very different.

A New Rich Class

This Talk: a new complexity measure—Bellman Eluder Dimension.

A New Rich Class

This Talk: a new complexity measure—Bellman Eluder Dimension.

contains a majority of known tractable RL problems.

Sample-efficient Algorithms for the New Class

GOLF (new):

- optimization-based, with optimism.
- surprisingly simple and clean.
- regret and sample complexity results match or improve the best existing results for several well-known subclasses.

Sample-efficient Algorithms for the New Class

GOLF (new):

- optimization-based, with optimism.
- surprisingly simple and clean.
- regret and sample complexity results match or improve the best existing results for several well-known subclasses.

OLIVE [JKA⁺]:

- based on hypothesis elimination.
- new analyses for general classes.

Formal Setups

Episodic MDP

 $MDP(S, A, \mathbb{P}, r, H)$: Each episode has H steps. Transition probability $\mathbb{P}_h(\cdot|s, a)$, reward $r_h : S \times A \rightarrow [0, 1]$.

Episodic MDP

 $MDP(S, A, \mathbb{P}, r, H)$: Each episode has H steps. Transition probability $\mathbb{P}_h(\cdot|s, a)$, reward $r_h : S \times A \rightarrow [0, 1]$.

Fixed initial state s_1 , the agent only picks action $\{a_h\}_{h=1}^H$.

Policy and Value

• **Policy:** A map from state to action $\pi : S \to A$.

Policy and Value

- **Policy:** A map from state to action $\pi : S \to A$.
- Value: Expected cumulative reward starting at step h from each state V^π_h(s) or each state-action pair Q^π_h(s, a).

Policy and Value

- **Policy:** A map from state to action $\pi : S \to A$.
- Value: Expected cumulative reward starting at step h from each state V^π_h(s) or each state-action pair Q^π_h(s, a).
- **Objective:** find the optimal policy to maximize the value $V_1^{\pi}(s_1)$.

Bellman Error

There exists an optimal policy $\pi^{\star} \rightarrow$ optimal value Q^{\star} .

Bellman Error

There exists an optimal policy $\pi^* \to \text{optimal value } Q^*$.

Bellman optimality equation:

$$Q_h^\star(s,a) = (\mathcal{T}_h Q_{h+1}^\star)(s,a) := r_h(s,a) + \mathbb{E}_{s' \sim \mathsf{Pr}_h(\cdot|s,a)} \max_{a' \in \mathcal{A}} Q_{h+1}^\star(s',a').$$

Bellman Error

There exists an optimal policy $\pi^* \to \text{optimal value } Q^*$.

Bellman optimality equation:

$$Q_h^{\star}(s,a) = (\mathcal{T}_h Q_{h+1}^{\star})(s,a) := r_h(s,a) + \mathbb{E}_{s' \sim \mathsf{Pr}_h(\cdot|s,a)} \max_{a' \in \mathcal{A}} Q_{h+1}^{\star}(s',a').$$

Bellman error:

$$\mathcal{E}(f,\rho,h) := \mathbb{E}_{(s,a)\sim \rho} \underbrace{(f_h - \mathcal{T}_h f_{h+1})(s,a)}$$

Bellman residual function

Function Approximation

Value function approximation: given function class $\mathcal{F} = \mathcal{F}_1 \times \ldots \times \mathcal{F}_H$, use $f = (f_1, \cdots, f_H) \in \mathcal{F}$ to approximate $Q^* = (Q_1^*, \ldots, Q_H^*)$.

Function Approximation

Value function approximation: given function class $\mathcal{F} = \mathcal{F}_1 \times \ldots \times \mathcal{F}_H$, use $f = (f_1, \cdots, f_H) \in \mathcal{F}$ to approximate $Q^* = (Q_1^*, \ldots, Q_H^*)$.

Common assumptions:

1. realizable: $\forall h \in [H], \ Q_h^{\star} \in \mathcal{F}_h$.

Function Approximation

Value function approximation: given function class $\mathcal{F} = \mathcal{F}_1 \times \ldots \times \mathcal{F}_H$, use $f = (f_1, \cdots, f_H) \in \mathcal{F}$ to approximate $Q^* = (Q_1^*, \ldots, Q_H^*)$.

Common assumptions:

- 1. realizable: $\forall h \in [H], \ Q_h^{\star} \in \mathcal{F}_h$.
- 2. completeness: $\forall h \in [H], \ \mathcal{T}_h \mathcal{F}_{h+1} \subset \mathcal{F}_h$.

Eluder Dimension

Point z is ϵ -independent of $\{x_1, x_2, \dots, x_n\}$ w.r.t. \mathcal{F} if $\exists f, g \in \mathcal{F}$ such that $\sqrt{\sum_i (f(x_i) - g(x_i))^2} \leq \epsilon$ for all $i \in [n]$, but $f(z) - g(z) > \epsilon$.

Eluder Dimension

Point z is ϵ -independent of $\{x_1, x_2, \dots, x_n\}$ w.r.t. \mathcal{F} if $\exists f, g \in \mathcal{F}$ such that $\sqrt{\sum_i (f(x_i) - g(x_i))^2} \le \epsilon$ for all $i \in [n]$, but $f(z) - g(z) > \epsilon$.

Eluder dimension [RV13] dim_E(\mathcal{F}, ϵ):

The length of the longest sequence $\{x_j\}_{j=1}^n$ such that $\exists \epsilon' \geq \epsilon$ where x_i is ϵ' -independent of $\{x_j\}_{i=1}^{i-1}$ for all $i \in [n]$.

Bellman Eluder dimension

Distributional Eluder Dimension

 $\mathsf{Points} \to \mathsf{distributions}.$

Distribution μ is ϵ -independent of $\{\nu_1, \nu_2, \dots, \nu_n\}$ w.r.t. \mathcal{F} if $\exists f \in \mathcal{F}$ such that $\sqrt{\sum_i (\mathbb{E}_{\nu_i} f)^2} \leq \epsilon$ for all $i \in [n]$, but $|\mathbb{E}_{\mu} f| > \epsilon$.

Distributional Eluder Dimension

 $\mathsf{Points} \to \mathsf{distributions}.$

Distribution μ is ϵ -independent of $\{\nu_1, \nu_2, \ldots, \nu_n\}$ w.r.t. \mathcal{F} if $\exists f \in \mathcal{F}$ such that $\sqrt{\sum_i (\mathbb{E}_{\nu_i} f)^2} \leq \epsilon$ for all $i \in [n]$, but $|\mathbb{E}_{\mu} f| > \epsilon$.

Distributional Eluder dimension dim_{DE}(\mathcal{F} , Π , ϵ):

The length of the longest sequence $\{\nu_j\}_{j=1}^n \subset \Pi$ such that $\exists \epsilon' \geq \epsilon$ where ν_i is ϵ' -independent of $\{\nu_j\}_{j=1}^{i-1}$ for all $i \in [n]$.

Bellman Eluder Dimension

Bellman Eluder (BE) dimension $\dim_{BE}(\mathcal{F}, \Pi, \epsilon)$

$$\dim_{\mathrm{BE}}(\mathcal{F},\Pi,\epsilon) := \max_{h \in [H]} \dim_{\mathrm{DE}} \left((I - \mathcal{T}_h) \mathcal{F}, \Pi_h, \epsilon \right)$$

- $(I T_h)\mathcal{F} := \{f_h T_h f_{h+1} : f \in \mathcal{F}\}$: Bellman residuals at step h.
- $\Pi = {\Pi_h}_{h=1}^H$: a collection of distributions over $S \times A$.

Bellman Eluder Dimension

Bellman Eluder (BE) dimension $\dim_{BE}(\mathcal{F}, \Pi, \epsilon)$

$$\dim_{\mathrm{BE}}(\mathcal{F},\Pi,\epsilon) := \max_{h \in [H]} \dim_{\mathrm{DE}} \left((I - \mathcal{T}_h) \mathcal{F}, \Pi_h, \epsilon \right)$$

- $(I \mathcal{T}_h)\mathcal{F} := \{f_h \mathcal{T}_h f_{h+1} : f \in \mathcal{F}\}$: Bellman residuals at step h.
- $\Pi = {\Pi_h}_{h=1}^H$: a collection of distributions over $S \times A$.

Typical choices of **I**:

- $\mathcal{D}_{\mathcal{F}}$: distributions generated by executing π_f greedy w.r.t $f \in \mathcal{F}$.
- \mathcal{D}_{Δ} : all Dirac distributions over $\mathcal{S} \times \mathcal{A}$.

Relation to Bellman Rank

Bellman rank (type-I) is the minimum integer *d*, so that $\forall h \in [H]$, $\exists \phi_h, \psi_h : \mathcal{F} \to \mathbb{R}^d$, $\forall f, g \in \mathcal{F}$:

 $\mathcal{E}(f,\pi_g,h) := \mathbb{E}_{\pi_g}[(f_h - \mathcal{T}_h f_{h+1})(s_h,a_h)] = \langle \phi_h(f), \psi_h(g) \rangle.$

Relation to Bellman Rank

Bellman rank (type-I) is the minimum integer *d*, so that $\forall h \in [H]$, $\exists \phi_h, \psi_h : \mathcal{F} \to \mathbb{R}^d$, $\forall f, g \in \mathcal{F}$:

 $\mathcal{E}(f,\pi_g,h) := \mathbb{E}_{\pi_g}[(f_h - \mathcal{T}_h f_{h+1})(s_h,a_h)] = \langle \phi_h(f), \psi_h(g) \rangle.$

low Bellman rank \subset low BE dimension

 $\dim_{\mathrm{BE}}(\mathcal{F}, \mathcal{D}_{\mathcal{F}}, \epsilon) \ \leq \ \mathcal{O}(\mathsf{Bellman rank} \cdot \log(1/\epsilon)).$

Relation to Eluder Dimension

low Eluder dimension \subset low BE dimension

Assume completeness,

 $\dim_{\mathrm{BE}}(\mathcal{F}, \mathcal{D}_{\Delta}, \epsilon) \ \leq \ \dim_{\mathrm{E}}(\mathcal{F}, \epsilon).$

Summary of Relations

The class of low BE dimension problems contains a majority of known RL problems learnable in polynomial samples.

Sample-Efficient Algorithm

Upper Confidence Bounds Algorithm

pull arms optimistically,
 collect rewards
 update confidence intervals.

GOLF Algorithm

Global Optimism based on Local Fitting (GOLF) for k = 1, ..., K

 optimistic planning
 π^k = π_{f^k}, where f^k = argmax_{f∈B} f₁(s₁, π_f(s₁)).

 data collection
 execute π^k to collect a trajectory (s₁, a₁,..., s_H, a_H).

 update confidence set B.

output π^{out} sampled uniformly from $\{\pi^k\}_{k=1}^K$.

GOLF Algorithm

Global Optimism based on Local Fitting (GOLF) for k = 1, ..., K

 optimistic planning
 π^k = π_{f^k}, where f^k = argmax_{f∈B} f₁(s₁, π_f(s₁)).

 data collection
 execute π^k to collect a trajectory (s₁, a₁,..., s_H, a_H).

 update confidence set B.

output π^{out} sampled uniformly from $\{\pi^k\}_{k=1}^K$.

Key idea: global optimism + local confidence set

GOLF Algorithm II

Confidence set $\mathcal{B} = \bigcap_h \mathcal{B}_h$:

$$\mathcal{B}_{h} = \left\{ f \in \mathcal{F} : \underbrace{\mathcal{L}_{\mathcal{D}_{h}}(f_{h}, f_{h+1})}_{\text{proxy to Bellman error}} \leq \underbrace{\inf_{g \in \mathcal{F}_{h}} \mathcal{L}_{\mathcal{D}_{h}}(g, f_{h+1})}_{\text{"ERM"}} + \underbrace{\beta}_{\text{relaxation}} \right\}$$
$$\mathcal{L}_{\mathcal{D}_{h}}(\phi, \psi) = \sum_{(s, a, r, s') \in \mathcal{D}_{h}} [\phi(s, a) - r - \max_{a' \in \mathcal{A}} \psi(s', a')]^{2}.$$

Theoretical Guarantees

Theorem [JLM21]

Assume realizability and completeness. **GOLF** outputs an $\mathcal{O}(\epsilon)$ -optimal policy in $\widetilde{\mathcal{O}}(H^2 d \log(\mathcal{N}_F)/\epsilon^2)$ episodes.

- $d = \min_{\Pi \in \{\mathcal{D}_{\Delta}, \mathcal{D}_{\mathcal{F}}\}} \dim_{\mathrm{BE}} (\mathcal{F}, \Pi, \epsilon/H)$, is the BE dimension.
- $\mathcal{N}_{\mathcal{F}}$: $\mathcal{O}(\epsilon)$ -covering number of \mathcal{F} in $\|\cdot\|_{\infty}$.

Theoretical Guarantees

Theorem [JLM21]

Assume realizability and completeness. **GOLF** outputs an $\mathcal{O}(\epsilon)$ -optimal policy in $\widetilde{\mathcal{O}}(H^2 d \log(\mathcal{N}_F)/\epsilon^2)$ episodes.

- $d = \min_{\Pi \in \{\mathcal{D}_{\Delta}, \mathcal{D}_{\mathcal{F}}\}} \dim_{\mathrm{BE}} (\mathcal{F}, \Pi, \epsilon/H)$, is the BE dimension.
- $\mathcal{N}_{\mathcal{F}}$: $\mathcal{O}(\epsilon)$ -covering number of \mathcal{F} in $\|\cdot\|_{\infty}$.
- regret guarantee: Regret(\mathcal{K}) $\leq \widetilde{\mathcal{O}}(H\sqrt{dK\log \mathcal{N}_{\mathcal{F}}})$.

Theoretical Guarantees

Theorem [JLM21]

Assume realizability and completeness. **GOLF** outputs an $\mathcal{O}(\epsilon)$ -optimal policy in $\widetilde{\mathcal{O}}(H^2 d \log(\mathcal{N}_F)/\epsilon^2)$ episodes.

- $d = \min_{\Pi \in \{\mathcal{D}_{\Delta}, \mathcal{D}_{\mathcal{F}}\}} \dim_{\mathrm{BE}} (\mathcal{F}, \Pi, \epsilon/H)$, is the BE dimension.
- $\mathcal{N}_{\mathcal{F}}$: $\mathcal{O}(\epsilon)$ -covering number of \mathcal{F} in $\|\cdot\|_{\infty}$.
- regret guarantee: Regret(\mathcal{K}) $\leq \widetilde{\mathcal{O}}(H\sqrt{d\mathcal{K}\log\mathcal{N}_{\mathcal{F}}})$.

GOLF learns low BE dimension problem sample-efficiently!

Relation to Prior Works

Guarantees for GOLF when restricted to following subclasses:

• Linear function approximation: regret $\widetilde{\mathcal{O}}(Hd_{\ln}\sqrt{K})$

matches [ZLKB20].

Relation to Prior Works

Guarantees for GOLF when restricted to following subclasses:

- Linear function approximation: regret $\widetilde{\mathcal{O}}(Hd_{\mathrm{lin}}\sqrt{K})$ matches [ZLKB20].
- Low Eluder dimension: regret $\widetilde{O}(H\sqrt{d_{\rm E}K\log N_F})$ improves over [WSY20] by $\sqrt{d_{\rm E}}$.

Relation to Prior Works

Guarantees for GOLF when restricted to following subclasses:

- Linear function approximation: regret $\widetilde{\mathcal{O}}(Hd_{\mathrm{lin}}\sqrt{K})$ matches [ZLKB20].
- Low Eluder dimension: regret $\widetilde{\mathcal{O}}(H\sqrt{d_{\rm E}K\log N_{\mathcal{F}}})$ improves over [WSY20] by $\sqrt{d_{\rm E}}$.
- Low Bellman rank: sample complexity $\widetilde{\mathcal{O}}(H^2 d_{\mathrm{br}} \log(\mathcal{N}_{\mathcal{F}})/\epsilon^2)$ improves over [JKA⁺17] by d_{br} . but requires completeness.

OLIVE Algorithm

A hypothesis elimination-based algorithm proposed in [JKA⁺17].

OLIVE Algorithm

A hypothesis elimination-based algorithm proposed in [JKA⁺17].

Theorem [JLM21]

Assume realizability. **OLIVE** finds an ϵ -optimal policy within $\widetilde{\mathcal{O}}(H^3 d^2 \log \mathcal{N}_{\mathcal{F}} / \epsilon^2)$ episodes.

- $d = \dim_{\mathrm{BE}} (\mathcal{F}, \mathcal{D}_{\mathcal{F}}, \epsilon/H).$
- $\mathcal{N}_{\mathcal{F}}$: $\mathcal{O}(\epsilon)$ -covering number of \mathcal{F} .

OLIVE Algorithm

A hypothesis elimination-based algorithm proposed in [JKA⁺17].

Theorem [JLM21]

Assume realizability. **OLIVE** finds an ϵ -optimal policy within $\widetilde{\mathcal{O}}(H^3 d^2 \log \mathcal{N}_{\mathcal{F}} / \epsilon^2)$ episodes.

- $d = \dim_{\mathrm{BE}} (\mathcal{F}, \mathcal{D}_{\mathcal{F}}, \epsilon/H).$
- $\mathcal{N}_{\mathcal{F}}$: $\mathcal{O}(\epsilon)$ -covering number of \mathcal{F} .

Comparing to GOLF: worse sample complexity, no \mathcal{D}_{Δ} , no regret guarantees, but does not require completeness.

Conclusion

Summary

New rich class of tractable RL problems—low BE dimension.

it contains a majority of known tractable RL problems.

Summary

New rich class of tractable RL problems—low BE dimension.

it contains a majority of known tractable RL problems.

New sample-efficient alg for low BE dimension problems—GOLF. simple, clean, and with sharp rate.

Summary

New rich class of tractable RL problems—low BE dimension.

it contains a majority of known tractable RL problems.

New sample-efficient alg for low BE dimension problems—GOLF. simple, clean, and with sharp rate.

New simpler analysis for OLIVE for general low BE dimension problems.

Thank You!