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Introduction



Background

• Partial observability is a common feature in real world.

Texas Hold’em Poker Robotics

Starcraft Hide-and-seek
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Background

• POMDP is a classic model for modeling partial observability.
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POMDP = hidden Markov model + input control.
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POMDPs is challenging

• Cannot observe the current state

⇒ cannot determine if a new state is reached

• The current hidden state depends on

the entire history

⇒ exponential possibilities!
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Computational hardness

Planning is Hard! When the parameters are known,

• PSPACE-complete to compute the optimal policy [PT87]

• NP-hard to compute the optimal memoryless policy [VLB12]

Q. Can we obtain any positive result for POMDPs?

A. Yes! A rich class of POMDPs is sample-efficiently learnable!
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Existing works

• [EDKM05], [RCdP08], [PV08]: without sample complexity guarantee.

• [GDB16, ALA16]: assume all latent states can be reached by random

actions or given polices.

Existing works do NOT address the EXPLORATION challenge.

This work: attack EXPLORATION directly.
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Settings and lower bounds



Definition of POMDPs

Formally, a POMDP is specified by

• state set S, observation set O, action set A.

• H: length of horizon.

• Th(s ′ | s, a): transition measure.

• Oh(o | s): emission measure.

• µ1: distribution of s1.

• r : (O ×A)H → [0,H]: reward function.
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Settings

Assumption

(a) The POMDP is undercomplete, i.e. S ≤ O

(b) σmin(Oh) ≥ α > 0 for all h

(a)+(b) is a robust version of rank(Oh) = S
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Theorem (Lower bound)

Without either (a) or (b), learning a 1/4-optimal policy needs at least Ω(AH−1)

samples in general.
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Observable operator models



Definition of OOMs

Definition (A philosophical one)

probability of observable sequence = product of operators.

An operator view of POMDPs

P(o1:H | a1:H−1) = eT
oH · B(aH−1, oH−1) · · ·B(a1, o1) · b0

where B(a, o) = OT(a)diag(O(o | ·))O† and b0 = Oµ1.
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Benefits of the operator view

• No need to recover model parameters: learning operators suffices.

• Operators are indexed by observations and actions, not by

unobservable underlying hidden states.

• Most importantly, the operators satisfy certain moment constraints!
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The moment constraint

Given arbitrary

• actions a and ã

• policy π
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Let Nh(a, ã),Mh(o, a, ã) ∈ RO×O be the probability matrices s.t.

Nh(a, ã) =P(oh = ·, oh−1 = ·)
Mh(o, a, ã) =P(oh+1 = ·, oh = o, oh−1 = ·)

Then
B(a, o)Nh(a, ã) = Mh(o, a, ã) (∗)

Moreover, if rank(N) = S , then B is identified by (∗).
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Algorithm OOM-UCB



Algorithm OOM-UCB

For k = 1, . . . ,K

1. Optimistic planning

πk ← arg max
π

max
θ̂∈Θk

V π
1 (θ̂).

2. Collect data using πk .

3. Construct the confidence set Θk .

Output πk sampled u.a.r. from {πk}Kk=1.

Local Confidence Set + Global Optimism
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Data collection

2. Collect data using πk

For all (h, a, ã) do:

(1) execute πk for step 1 to h − 2

(2) take action ã and a at step h − 1 and h, respectively

(3) add 1 to the (oh, oh−1)th entry of N̂h(a, ã)

and the (oh+1, oh−1)th entry of M̂h(o, a, ã)
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Construct the confidence set

3. Construct the confidence set Θk

• Replace Nh and Mh by empirical estimate N̂h and M̂h.

• Construct the confidence set for each o, a, ã, h

Bh(o, a, ã) ,
{
θ̂ : ‖B(a, o; θ̂)N̂h(a, ã)− M̂h(o, a, ã)‖ ≤ γ

}
.

• Take the intersection of all confidence sets

Θ ,
[
∩(o,a,ã,h)Bh(o, a, ã)

]
∩ {θ̂ : σmin(Ô) ≥ α}.

Remark. The confidence set for b0 is simple; we neglect it here.
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Main theorem

Assumption

(a) The POMDP is undercomplete, i.e. S ≤ O.

(b) σmin(Oh) ≥ α > 0 for all h.

Theorem
Under the assumption above, OOM-UCB outputs an ε-optimal policy

within poly(H,S ,A,O, α−1)/ε2 iterations with probability at least 2/3.

The first polynomial sample complexity guarantee for RL of POMDPs

in the exploration-setting.
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Proof Sketch (1/2)

• Martingale concentration ⇒ θ? ∈ Θk

• Optimistic planning: (πk , θk)← arg maxπ maxθ̂∈Θk
V π

1 (θ̂)

⇒
K∑

k=1

[V ?(θ?)− V πk (θ?)]︸ ︷︷ ︸
suboptimality gap

≤
K∑

k=1

[V πk (θk)− V πk (θ?)]︸ ︷︷ ︸
same policy, different models
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Proof Sketch (2/2)

K∑
k=1

[V πk (θk)− V πk (θ?)]︸ ︷︷ ︸
same policy, different models

.
K∑

k=1

∑
h,a,ã,o,s

‖[B(a, o; θk)− B(a, o; θ?)]OT(ã)es‖1︸ ︷︷ ︸
operator error of θk on s-direction

· Pπk

θ?(sh−1 = s)︸ ︷︷ ︸
prob. of visiting s

by πk

NO need to recover B.

Being accurate in the directions of frequently visited states suffices.
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Future directions

• Over-complete POMDPs.

• Markov games with partial observations.

• Function approximation.

• Stronger assumptions for computational efficiency.

...

Thank You!
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