Sample-efficient Reinforcement Learning of Undercomplete POMDPs

based on joint work with Chi Jin, Sham Kakade and Akshay Krishnamurthy

Qinghua Liu Princeton University RL Theory Seminar, February 23, 2021

- 1. Introduction
- 2. Settings and lower bounds
- 3. Observable operator models
- 4. Algorithm OOM-UCB

Introduction

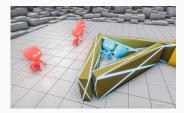
Background

• Partial observability is a common feature in real world.

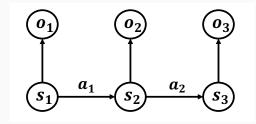
Starcraft

Texas Hold'em Poker

Hide-and-seek



• POMDP is a classic model for modeling partial observability.



POMDP = hidden Markov model + input control.

- Cannot observe the current state
 - \Rightarrow cannot determine if a new state is reached

• The current hidden state depends on the **entire history**

 \Rightarrow exponential possibilities!

Computational hardness

Planning is Hard! When the parameters are known,

- PSPACE-complete to compute the optimal policy [PT87]
- NP-hard to compute the optimal memoryless policy [VLB12]

Computational hardness

Planning is Hard! When the parameters are known,

- PSPACE-complete to compute the optimal policy [PT87]
- NP-hard to compute the optimal memoryless policy [VLB12]

Q. Can we obtain any positive result for POMDPs?

Computational hardness

Planning is Hard! When the parameters are known,

- PSPACE-complete to compute the optimal policy [PT87]
- NP-hard to compute the optimal memoryless policy [VLB12]

Q. Can we obtain any positive result for POMDPs?

A. Yes! A rich class of POMDPs is sample-efficiently learnable!

- [EDKM05], [RCdP08], [PV08]: without sample complexity guarantee.
- [GDB16, ALA16]: assume all latent states can be reached by random actions or given polices.

- [EDKM05], [RCdP08], [PV08]: without sample complexity guarantee.
- [GDB16, ALA16]: assume all latent states can be reached by random actions or given polices.

Existing works do NOT address the **EXPLORATION** challenge.

- [EDKM05], [RCdP08], [PV08]: without sample complexity guarantee.
- [GDB16, ALA16]: assume all latent states can be reached by random actions or given polices.

Existing works do NOT address the **EXPLORATION** challenge.

This work: attack **EXPLORATION** directly.

Settings and lower bounds

Formally, a **POMDP** is specified by

- \bullet state set $\mathcal S,$ observation set $\mathcal O,$ action set $\mathcal A.$
- *H*: length of horizon.

Formally, a **POMDP** is specified by

- state set \mathcal{S} , observation set \mathcal{O} , action set \mathcal{A} .
- *H*: length of horizon.
- $\mathbb{T}_h(s' \mid s, a)$: transition measure.
- $\mathbb{O}_h(o \mid s)$: emission measure.
- μ_1 : distribution of s_1 .

Formally, a **POMDP** is specified by

- state set \mathcal{S} , observation set \mathcal{O} , action set \mathcal{A} .
- *H*: length of horizon.
- $\mathbb{T}_h(s' \mid s, a)$: transition measure.
- $\mathbb{O}_h(o \mid s)$: emission measure.
- μ_1 : distribution of s_1 .
- $r: (\mathcal{O} \times \mathcal{A})^H \rightarrow [0, H]$: reward function.

Settings

Assumption

- (a) The POMDP is undercomplete, i.e. $S \leq O$
- (b) $\sigma_{\min}(\mathbb{O}_h) \geq \alpha > 0$ for all h

(a)+(b) is a robust version of $rank(\mathbb{O}_h) = S$



Theorem (Lower bound)

Without either (a) or (b), learning a 1/4-optimal policy needs at least $\Omega(A^{H-1})$ samples in general.

Observable operator models

Definition (A philosophical one)

probability of *observable* sequence = product of *operators*.

An operator view of POMDPs

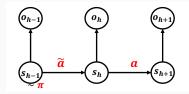
$$\mathbb{P}(o_{1:H} \mid a_{1:H-1}) = \mathbf{e}_{o_H}^{\mathrm{T}} \cdot \mathbf{B}(a_{H-1}, o_{H-1}) \cdots \mathbf{B}(a_1, o_1) \cdot \mathbf{b}_0$$

where $\mathbf{B}(a, o) = \mathbb{OT}(a) \operatorname{diag}(\mathbb{O}(o \mid \cdot))\mathbb{O}^{\dagger}$ and $\mathbf{b}_0 = \mathbb{O}\mu_1$.

- No need to recover model parameters: learning operators suffices.
- Operators are indexed by observations and actions, not by unobservable underlying hidden states.
- Most importantly, the operators satisfy certain moment constraints!

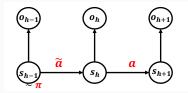
Given arbitrary

- \bullet actions a and \tilde{a}
- \bullet policy π



Given arbitrary

- \bullet actions a and \tilde{a}
- \bullet policy π



Let $N_h(a, \tilde{a}), M_h(o, a, \tilde{a}) \in \mathbb{R}^{O \times O}$ be the probability matrices s.t.

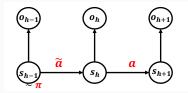
$$\mathbf{N}_{h}(a, \tilde{a}) = \mathbb{P}(o_{h} = \cdot, o_{h-1} = \cdot)$$
$$\mathbf{M}_{h}(o, a, \tilde{a}) = \mathbb{P}(o_{h+1} = \cdot, o_{h} = o, o_{h-1} = \cdot)$$

Then

$$\mathbf{B}(a,o)\mathbf{N}_h(a,\tilde{a}) = \mathbf{M}_h(o,a,\tilde{a}) \tag{(*)}$$

Given arbitrary

- \bullet actions a and \tilde{a}
- \bullet policy π



Let $N_h(a, \tilde{a}), M_h(o, a, \tilde{a}) \in \mathbb{R}^{O \times O}$ be the probability matrices s.t.

$$\mathbf{N}_{h}(a, \tilde{a}) = \mathbb{P}(o_{h} = \cdot, o_{h-1} = \cdot)$$
$$\mathbf{M}_{h}(o, a, \tilde{a}) = \mathbb{P}(o_{h+1} = \cdot, o_{h} = o, o_{h-1} = \cdot)$$

Then

$$\mathbf{B}(a,o)\mathbf{N}_h(a,\tilde{a}) = \mathbf{M}_h(o,a,\tilde{a}) \tag{(*)}$$

Moreover, if rank(N) = S, then **B** is identified by (*).

Algorithm OOM-UCB

For $k = 1, \ldots, K$

1. Optimistic planning

$$\pi_k \leftarrow rg\max_{\pi} \max_{\hat{\theta} \in \Theta_k} V_1^{\pi}(\hat{\theta}).$$

- 2. Collect data using π_k .
- 3. Construct the confidence set Θ_k .

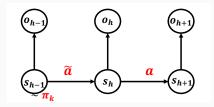
Output π_k sampled u.a.r. from $\{\pi_k\}_{k=1}^K$.

Local Confidence Set + Global Optimism

2. Collect data using π_k

For all (h, a, \tilde{a}) do:

- (1) execute π_k for step 1 to h-2
- (2) take action \tilde{a} and a at step h-1 and h, respectively
- (3) add 1 to the $(o_h, o_{h-1})^{\text{th}}$ entry of $\widehat{N}_h(a, \tilde{a})$ and the $(o_{h+1}, o_{h-1})^{\text{th}}$ entry of $\widehat{M}_h(o, a, \tilde{a})$



- **3.** Construct the confidence set Θ_k
 - Replace N_h and M_h by empirical estimate \widehat{N}_h and \widehat{M}_h .

Construct the confidence set

- **3.** Construct the confidence set Θ_k
 - Replace \mathbf{N}_h and \mathbf{M}_h by empirical estimate $\widehat{\mathbf{N}}_h$ and $\widehat{\mathbf{M}}_h$.
 - Construct the confidence set for each o, a, \tilde{a}, h

$$\mathfrak{B}_h(o,a,\widetilde{a}) \triangleq \left\{ \widehat{ heta} : \| \mathsf{B}(a,o;\widehat{ heta}) \widehat{\mathsf{N}}_h(a,\widetilde{a}) - \widehat{\mathsf{M}}_h(o,a,\widetilde{a}) \| \leq \gamma
ight\}.$$

Construct the confidence set

- **3.** Construct the confidence set Θ_k
 - Replace \mathbf{N}_h and \mathbf{M}_h by empirical estimate $\widehat{\mathbf{N}}_h$ and $\widehat{\mathbf{M}}_h$.
 - Construct the confidence set for each o, a, \tilde{a}, h $\mathfrak{B}_h(o, a, \tilde{a}) \triangleq \left\{ \hat{\theta} : \| \mathbf{B}(a, o; \hat{\theta}) \widehat{\mathbf{N}}_h(a, \tilde{a}) - \widehat{\mathbf{M}}_h(o, a, \tilde{a}) \| \leq \gamma \right\}.$
 - Take the intersection of all confidence sets

$$\Theta \triangleq \left[\cap_{(o,a,\tilde{a},h)} \mathfrak{B}_h(o,a,\tilde{a})\right] \cap \{\hat{\theta} : \sigma_{\min}(\hat{\mathbb{O}}) \geq \alpha\}.$$

Remark. The confidence set for b_0 is simple; we neglect it here.

Assumption

(a) The POMDP is undercomplete, i.e. $S \leq O$.

(b) $\sigma_{\min}(\mathbb{O}_h) \geq \alpha > 0$ for all h.

Theorem

Under the assumption above, OOM-UCB outputs an ϵ -optimal policy within $poly(H, S, A, O, \alpha^{-1})/\epsilon^2$ iterations with probability at least 2/3.

The first polynomial sample complexity guarantee for RL of POMDPs in the exploration-setting.

- Martingale concentration $\Rightarrow \theta^{\star} \in \Theta^k$
- Optimistic planning: $(\pi_k, \theta_k) \leftarrow \arg \max_{\pi} \max_{\hat{\theta} \in \Theta_k} V_1^{\pi}(\hat{\theta})$

$$\Rightarrow \sum_{k=1}^{K} \underbrace{[V^{\star}(\theta^{\star}) - V^{\pi_{k}}(\theta^{\star})]}_{\text{suboptimality gap}} \leq \sum_{k=1}^{K} \underbrace{[V^{\pi_{k}}(\theta_{k}) - V^{\pi_{k}}(\theta^{\star})]}_{\text{same policy, different models}}$$

Proof Sketch (2/2)

$$\sum_{k=1}^{K} \underbrace{\left[V^{\pi_{k}}(\theta_{k}) - V^{\pi_{k}}(\theta^{\star}) \right]}_{\text{same policy, different models}} \\ \lesssim \sum_{k=1}^{K} \sum_{h,a,\tilde{s},o,s} \underbrace{\left\| \left[\mathbf{B}(a,o;\theta_{k}) - \mathbf{B}(a,o;\theta^{\star}) \right] \mathbb{OT}(\tilde{a}) \mathbf{e}_{s} \right\|_{1}}_{\text{operator error of } \theta_{k} \text{ on } s\text{-direction}} \cdot \underbrace{\mathbb{P}_{\theta^{\star}}^{\pi_{k}}(s_{h-1} = s)}_{\text{prob. of visiting } s} \\ \underset{by \pi_{k}}{\overset{}}$$

NO need to recover B.

Being accurate in the directions of frequently visited states suffices.

- Over-complete POMDPs.
- Markov games with partial observations.
- Function approximation.
- Stronger assumptions for computational efficiency.

Thank You!

Reference

Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar.

Reinforcement learning of pomdps using spectral methods. *29th Annual Conference on Learning Theory*, 2016.

- Eyal Even-Dar, Sham M Kakade, and Yishay Mansour.
 Reinforcement learning in pomdps without resets.
 2005.
- Zhaohan Daniel Guo, Shayan Doroudi, and Emma Brunskill.
 A pac rl algorithm for episodic pomdps.
 In Artificial Intelligence and Statistics, pages 510–518, 2016.
- Christos H Papadimitriou and John N Tsitsiklis.
 The complexity of markov decision processes.
 Mathematics of operations research, 12(3):441–450, 1987.
- Pascal Poupart and Nikos Vlassis.
 Model-based bayesian reinforcement learning in partially observable domains.

In *Proc Int. Symp. on Artificial Intelligence and Mathematics*, pages 1–2, 2008.

Stephane Ross, Brahim Chaib-draa, and Joelle Pineau.

Bayes-adaptive pomdps.

In Advances in neural information processing systems, pages 1225–1232, 2008.

Nikos Vlassis, Michael L Littman, and David Barber.

On the computational complexity of stochastic controller optimization in pomdps.

ACM Transactions on Computation Theory (TOCT), 4(4):1–8, 2012.